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Abstract
We consider the problem of carrying an initial Bloch vector to a final Bloch
vector in a specified amount of time under the action of three control fields
(a vector control field). We show that this control problem is solvable and
therefore it is possible to optimize the control. We choose the physically
motivated criteria of minimum energy expended in the control, minimum
magnitude of the rate of change of the control and a combination of both.
We find exact analytical solutions, determine the fields for a general one-qubit
gate, and use the Y gate as an example. We argue that in the case of less than
three controls, only the physical intuition does not provide a straight reasonable
solution, and solve the problem in the case of a unique control minimizing the
energy consumption.

PACS numbers: 03.67.−a, 03.65.Ta

1. Introduction

Recent advances in experimental physics in the field of manipulation and measurement of
single quantum systems have stimulated a flurry of investigations into the control of quantum
systems, and more or less formal schemes have been developed [1–5]. The conditions under
which a given quantum system is completely controllable have been explored [6–10] and
some limits of quantum controllability [12] have been found. Quantum control theory has
several important applications including quantum state engineering [13], control of chemical
reactions [14, 15], laser cooling of molecular degrees of freedom [16, 17] and quantum register
initialization [18].

A major application of the theory of quantum control is the subject of quantum
computation. The physical implementation of a quantum computer is a major challenge
and many proposals [21] including ion traps, optical cavities and quantum dots have been
made. Promising practical implementations face the problem of heat dissipation which gets
worse with the shrinking of the size of the proposed physical system. Thus it is desirable to
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find a set of energy efficient universal quantum gates, for example, general one-qubit gates and
one-entangling two-qubit gates. In this paper we address the problem of carrying an initial
qubit (more precisely of an initial Bloch vector) to a specified final qubit in a given amount
of time, short enough to ignore decoherence effects, using the minimum amount of energy
possible. The optimal problem for the propagator of two-level systems with cost quadratic in
the control was addressed and solved in [24] using different techniques.

This paper is organized as follows: we review the controllability of the Bloch vector
in section 2. In section 3 we formulate and solve the problem of optimal control under the
criteria of minimum energy, minimum energy derivative and a combination of both with a
three-component vector field, and apply it to a general one-qubit gate. Although most of the
time we do not have three available controls, the optimization can show small surprises (the
result in the second case is not of sine type as one would naively expect), and allows for a
precise definition of a compromise between different criteria and for an easy generalization
to more complex cases (for example, in the presence of dissipation/decoherence we can add
terms proportional to the entropy). Finally, the problem of optimal control with a single
control and minimum energy is considered, and applied to the Y gate.

Two-level systems adequately model many physical systems (spin- 1
2 , photon polarization,

atoms in (quasi) monochromatic electromagnetic fields, etc), despite its simplicity. A general
one-qubit gate can be represented as a two-level quantum system, and the most general
Hamiltonian for such a system can be written as H = h0I + h • σ , where σ are Pauli’s
matrices, h0 determines the zero energy reference, and h is a classical vector. Since we can
use any h we want, and this is the field we use to control our system, from now we refer to h
as our vector control. Moreover, we assume h0 = 0.

2. Bloch vector controllability

All information regarding the quantum state of a two-level system is completely determined
by its density matrix ρ, or equivalently by its Bloch vector s(t) = Tr(ρσ). The dynamics of
the Bloch vector, given by the well-known Bloch equation ṡ(t) = b × s, where b = 2h/h̄,
can be put in the more explicit form ṡ = (bxJ x + byJy + bzJz)s, where the J are the rotation
generators. In this case we can formulate the problem of taking an initial state ρi to a final
state ρf in a specified amount of time T = tf − ti . After rescaling, we take ti = 0, tf = 1.
Note that we assume all three components of h (or of b) are control fields. Thus, since we
have all three rotation generators, the system is completely controllable in the sense that every
rotation can be reached from the identity [8, 11]. In other words, any final vector can be
reached from any other initial vector (of the same length, or the same degree of mixture) in
any finite time, provided there are no constraints on the size of the control fields. Moreover,
the motion equation can be inverted [19] to give b = s × ṡs−2 − f (t)s, where f (t) is an
arbitrary function, which shows that the control problem is solvable, i.e. a suitable b(t) can
be found, even when a path s(t) is prescribed. Moreover, even in this event the solution is not
unique.

3. Optimal control

As mentioned before, the larger the fields used for control the greater the amount of heat to be
dissipated. Then, proving the complete controllability of the one-qubit gate, it is meaningful
to ask which control vector field is required to perform an arbitrary rotation operation with the
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minimum expenditure of energy. We address this problem as an optimal ‘classical’ control
problem for the Bloch vector, that is we shall extremize the cost functional

S =
∫ tf

t0

dt

{
1

2
b • b + λ • (ṡ − b × s)

}
(1)

where b = 2h/h̄, and λ is a (vector) Lagrange multiplier, and the momentum corresponding
to s. Note that this formulation is easy to generalize for more complex situations. For
example, under dissipative conditions, it is possible to add a term proportional to the entropy
of the two-level system, thus making possible a compromise between the energy spent and the
entropy gained. Note too that the form of the cost functional above is not arbitrary: where the
vector control field is a magnetic field acting on a spin- 1

2 system, or an electromagnetic field
for a charged two-level system, the (electro)magnetic energy would have the assumed form.
For the sake of simplicity we scale the variables to get the following cost functional:

S =
∫ 1

0
dt

{
1

2a
b • b + λ • (ṡ − b × s)

}
(2)

where the constant a is introduced to have s and λ of the same length.
Not all of the resulting Euler–Lagrange equations

b = as × λ ṡ = b × s λ̇ = b × λ (3)

are true dynamical equations: the first equation is a constraint. A few simple calculations show
that the system of equations (3) possesses the following constants of motion s2 = s • s, λ2 =
λ • λ and ν = λ • s = λs cos(θ), where θ is the angle between λ and s. The equations of
motion can be put in the equivalent form

d

d[at]

(
s

λ

)
=

(−λ · s s2

−λ2 λ · s
) (

s

λ

)
=

(−cos(θ) 1
−1 cos(θ)

) (
s

λ

)
(4)

whose solution reads(
s

λ

)
= 1

sin(θ)

(
sin(θ − at sin θ) sin(at sin θ)

−sin(at sin θ) sin(θ + at sin θ)

) (
s(0)

λ(0)

)
. (5)

We have assumed that s and λ are unitary vectors. Note that we have obtained an orthogonal
transformation. In fact, this could have been anticipated by showing that b is a constant (both
in norm and direction). Observe that the solution is valid for any value of θ , so we have
freedom to choose θ to our best convenience. For example, we can choose λ(0) = s(1). It
follows that cos θ = s(0) · s(1), and sin(a sin(θ)) = sin(θ). This choice leads to the solution

s(t) = sin(b(1 − t))

sin(b)
si +

sin(bt)

sin(b)
sf (6)

where

b(t) = b(0) = arcsin (sin(θ))

sin(θ)
si × sf = (θ + 2πn)s⊥ = b1(t; n)s⊥. (7)

Equations (6) and (7) constitute the solution to the proposed problem and agree with the result
of [20]. Observe that in the scaled variables that the magnitude of the field is essentially equal
to the value of the angle between the initial and the final Bloch vectors. The solution, which
corresponds to a rotation around (−)s⊥ at constant speed, from the initial Bloch vector to the
final one, is not unique: due to the multivaluedness of the function arcsin, there is an infinite
number of solutions. Each solution corresponds to a local minimum, the global minimum
being the solution whose magnitude is equal to the angle between the initial and the final
Bloch vector. The other solutions correspond to an integer number of turns followed by this
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angle, or to the case where the final Bloch vector is reached rotating the other way. Choices
different from λ(0) = s(1) are also meaningful, but should lie on the plane which contains
the initial and final Bloch vectors. Observe that the solution breaks down when the initial and
final vectors are antipodal. In this case there is an infinite number of solutions all of them
expending the same amount of energy. In this case the choice of an initial Lagrange multiplier
vector which is not (anti)parallel to the initial Bloch vector leads to a particular solution.

Now, we remark that the minimum energy control corresponds to the minimum path on
the Bloch sphere. The length l transversed by the tip of the Bloch vector is given by

l =
∫ 1

0

∣∣∣∣ds

dt

∣∣∣∣ dt =
∫ 1

0
|b × s| dt = s

∫ 1

0
b(t)|sin(θ(t))| dt � s

∫ 1

0
b(t) dt . (8)

This means that, for a given magnitude of the control field, the transversed length is maximized
when the control vector field makes a right angle with the Bloch vector. In other words, if
we restrict to control fields that are perpendicular to the Bloch vector, and if the Bloch vector
transverses a longer path, it is necessary to have a larger average control field. This allows us
to consider only vector controls pointing in the direction of si × sf . Making the ansatz

b(t) = b(t)s⊥ (9)

after some algebra, we obtain

s(t) = sin
(
θ − ∫ t

0 b(t ′) dt ′
)

sin(θ)
si +

sin
(∫ t

0 b(t ′) dt ′
)

sin(θ)
sf (10)

where b should satisfy the equality
∫ 1

0 b(t) dt = θ . If we write b(t) as θ + δ(t) we see that the

average value of δ(t) over the unitary interval is zero and that
∫ 1

0 b2(t) dt = θ2 +
∫ 1

0 δ2(t) dt .
Thus, the minimum is attained when the control vector field is constant from the initial
until the final time. It is possible to give an alternative argument which shows that the
solution of minimum fluence is the same as the shortest geodesic. Inverting the Bloch
equation we obtain the control field b = s × ṡ + f s, and the energy expended in the control∫ 1

0 b2(t) dt = ∫ 1
0 ((ṡ)2 − (s · ṡ)2 + f 2) dt . Since the second subintegral term is identically

zero, and the functionf (t) should be zero for the extrema, we see that the fluence minimization
and geodesic minimization (see equation (8)) are almost the same, and reach their extrema
together. Had we chosen the squared length instead of the length, both expressions would
have been identical.

Since the time necessary to perform a single quantum operation is generally short in
low-dimensional condensed matter systems, which are the most promising candidates, one
should also analyse possible limitations set by the rate at which control fields can be set. In
particular, it is worth noting that the solution (7) is a discontinuous one, zero before the initial
time, constant between the initial and final times and zero again from the final time on. Had
we used the square of the time derivative of the control field instead of the square of the field
itself, defining the cost functional

S =
∫ 1

0
dt

{
1

2�2

db

dt
• db

dt
+ λ • (ṡ − b × s)

}
(11)

the solutions obtained above would also have been solutions of the new problem. In this case
a whole set of new solutions arises, which are of constant magnitude but whose direction
changes with time. It is easy to construct such solutions. If {b(t), s(t)} is a solution of
the Bloch equations, with a time dependent b2(t), then {b̃(t) = b(t) + f (t)s, s} is also a
solution, no matter how the function f is chosen. In particular, we can adjust f to obtain
b̃

2
a constant, and make it also of minimum control field derivative. For instance, if we set
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s(t) = cos(φ(t))s0(t) + sin(φ(t))s⊥, where s0 is the solution for the problem of minimum
fluence, and cos(φ(t)) a function with value 1 both at t = 0 and at t = 1, we have the
control field b(t) = θ cos2(φ)s⊥ − φ̇sτ − θ sin(φ) cos(φ)s0 where sτ = s⊥ × s0 is a unitary
vector needed to define a time-dependent right triad {s0, sτ , s⊥}. One can choose f as
f = ±

√
B2 − θ2 cos2(φ) − φ̇2, with B2 the maximum value of b2, so at instants where the

maximum is attained, f vanishes. For the sake of definiteness we use φ(t) = θµt (1 − t)

which yields f 2 = θ2(sin2(φ(t)) + µ2t (2 − t)), and produces a new constant norm vector
control b̃ with magnitude θ

√
1 + µ2. This solution, of course, expends more energy than that

previously found to perform the same control.
Solutions with vanishing magnitude at the initial and final instants of time also exist.

Observe that in this case the equation for b is

b̈ = −�2s × λ (12)

which is a true dynamical equation. This allows for some extra flexibility: now we can add
initial and final conditions on the value of the control field. From the point of view of the
energy injected into the system, the most physically sensible conditions are those of vanishing
control field both at the initial and the final times. We observe that in this case the solution
should follow the shortest geodesic between the initial and the final Bloch vectors. In fact,
since the control field begins and ends with a vanishing value, it should grow and decrease as
slowly as possible, but fast enough to reach the maximum value necessary to have an average
magnitude of at least θ . If the geodesic is not taken, the field should grow to a larger value
and therefore, given that the time is fixed, it should grow at a faster pace so that it could not
be the minimum solution sought.

Differentiating the equation (12) we obtain d3b
dt3 = b × d2b

dt2 , which immediately tells us
that the second derivative of the vector control has constant norm. The first integral of this
third-order equation, d2b

dt2 = b × db
dt

− �2si × sf , where we have assumed λ(0) = sf , can be
solved under the assumption that the control vector is a second degree polynomial in t, with the
result b(t) = �2|sin(θ)|

2 t (1 − t)s⊥ = b2(t)s⊥. Numerical solution of these equations, without
the ansatz made above, also leads to the same solutions. Before expressing b completely in
terms of si and sf , we proceed to discuss the more general physical criterion in which one is
interested in energy saving but with a limited rate of change of the vector control, through the
cost functional

S =
∫ 1

0
dt

{
1

2a

(
b • b +

1

ω2

db

dt
· db

dt

)
+ λ • (ṡ − b × s)

}
. (13)

The experience gained with the previous examples shows that the solution control field should
point (anti)parallel to s⊥. Some algebra leads to the solution

b(t) = a|sin(θ)|
(

1 − cosh ω
(
t − 1

2

)
cosh

(
ω
2

)
)

s⊥ = b3(t)s⊥.

We note that all of the solutions found so far have the form of equation (9), and therefore have
the solution (10). We only have to take care of the final value of s. This leads to the following
more explicit forms for b(t)

b2(t; n) = 6(θ + 2πn)t (1 − t)
(14)

b3(t; n) = θ + 2πn

1 − tanh(ω/2)

ω/2

(
1 − cosh

(
ω

(
t − 1

2

))
cosh

(
ω
2

)
)

.

For the second case considered, the intuitive choice, b = πθ sin(πt)/2, produces a value of
the cost functional only 1.5% above that of the optimal solution. Finally, for control fields of
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the form of equation (9), perpendicular to the initial and final Bloch vectors, the cost functional
can be written in purely geometric terms. If we set φ̇(t) = b(t), φ(0) = 0, then S can be
expressed as

S = 1

2a

∫ b̄

0
b(φ)

(
1 +

(
1

ω

db

dφ

)2
)

dφ (15)

where b̄ is the average magnitude of the control field, and φ the accumulated angle (or
the arc length) traversed by the Bloch vector. Equation (15), just like equation (13),
contains the other two cases: the first in the limit 1/ω → 0, and the second in the
limit 1/a → 0 but with aω2 = �2 fixed. Of course, b1(t; n) = lim1/ω→0 b3(t; n) and
b2(t; n) = lim1/a→0,aω2=�2 b3(t; n). The parameter ω can be used to define, in a precise way,
the relative importance of the energy and the energy derivative terms.

Now we can use these results for a general one-qubit gate, which can be described by the
unitary matrix [23]

U = eiαRn̂(θ) = eiα e−iθ n̂·σ/2, (16)

where α is an unimportant phase and Rn̂(θ) is a matrix which rotates Bloch vectors for an
angle θ around the direction give by n̂. Thus the optimal field for the general one-qubit gate
is given by

b(t) = bi(t)n̂

where the subscript refers to the particular optimization criterion. We illustrate this solution in
the case of a Y gate, where the upper level is transformed in (−|+〉 + |−〉)/2, which expressed
in terms of Bloch vectors corresponds to the transformation k → −i. Using the expressions
found above we have the control fields

b1(t) = −π

2
j b2(t) = −3πt(1 − t)j b3(t) = − ωπ

2(ω − 2 tanh(ω/2))
j

obtained using the criteria of minimum energy, minimum average rate of the magnitude of
the control and a combination of both, respectively. Although the minimum energy result
is expected, and the second and third results are also intuitively clear, precise results can be
found within the optimal formulation used here.

4. Single control field

Typical physical realizations of quantum bits are such that the Hamiltonian is given by
H = h̄(bxσx + byσy + bzσz)/2 or H = h̄(bxσx + bzσz)/2, where bz is a constant and bx

and by are classical control fields. Since we have at least two rotation generators, it is possible
to generate any rotation. However, since bz is a constant over which we do not have any
control, intuition is no longer as good. Thus, even when two controls allow the alignment of
the total classical field b along n̂, its magnitude cannot be changed, and we are no longer free
to choose the time to realize the rotation. Moreover, we have no hints about the choice of
control fields to make some compromise between energy consumption and growth rate of the
control. A single control only worsens things. We can still generate any rotation, for example,
using the SU(2) decomposition

e−ibzt1σz e−iβσx e−ibz(1−t1)σz . (17)

Note, however, that this decomposition is useful if the second rotation by β is performed in a
very short time interval, that is, with big fields and big field gradients, exactly what we want to
avoid. Also, given a bz and a gate, there is a minimum time which allows for the realization of
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the gate, which means that any rotation can be realized only if enough time is given (see [24]).
In fact, in the absence of the control field, the Bloch vector precesses at the rate bz around
the z-axis. That is, if the given interval of time is normalized to one, Bloch vectors lying on
meridians set apart for an angle greater than bz, measured in the sense in which the Bloch
vector precesses, cannot be reached. Thus, even when it exists, the solution is not trivial,
unless we use large fields and gradients, and renounce any attempt to control the time interval
in which the rotation is performed. Alternatively, we can write a decomposition like (17) with
time-dependent coefficients, derive and set up a system of three ordinary differential equations,
which is not simpler than the optimization approach (and a condition such as minimum energy
should be added a posteriori).

Assuming the particular problem is solvable, we proceed to write an adequate cost
functional,

S =
∫ 1

0
dt

(
pq̇ − bxp − bz

√
1 − p2 sin(q) +

1

2a
b2

x

)

where we have parametrized the Bloch vector according to s = (p,
√

1 − p2 cos(q),√
1 − p2 sin(q)), and written a classical Hamiltonian Hcl(p, q) = s • b, with canonically

conjugated variables p, q [25, 26]. Note also the appearance of a term proportional to the
control energy spent. The equations of motion, equivalent to ṡ = b × s, are supplemented by
the condition bx = ap = asx . When this constraint is used on the equations of motion

ṡx = −bzsy ṡy = bzsx − bxsz ṡz = bxsy

we get

ṡx = −bzsy ṡy = bzsx − asxsz ṡz = asxsy

from which we identify the constant of motion as2
x + 2bzsz. Using this constant of motion we

obtain the equations

ṡx = −bzsy ṡy =
(

bz − a2

2bz

s2
x (0) − asz(0)

)
sx +

a2

2bz

s3
x .

These equations, of Duffing type, resemble those of [24] for the optimal control variables and
possess the constant of motion

bz

2
s2
y − 1

2

(
a2

2bz

s2
x(0) − asz(0) − bz

)
s2
x +

a2

8bz

s4
x .

This last constant of motion allows us to derive

ṡx = −bzsy = ∓bz

√
A + Bs2

x − Cs4
x
,

with A = s2
x (0) + s2

y (0) − a2s4
x(0)/4 + abzsz(0)s2

x(0), B = as2
x(0)/2 − abzsz(0) − b2

z , and
C = a/4, which can be solved in terms of elliptic functions. In the case of the Y gate the
motion equation is

dsx

dτ
= ∓

√
1 − α2 − (1 − 2α2)s2

x − α2s4
x = ∓

√(
1 − s2

x

) (
1 − α2

(
1 − s2

x

))
,

where we have set τ = bzt and α = a/(2bz). Now we use the change of variables defined by

sx = −cos(y) dsx = sin(y) dy 1 − s2
x = sin(y)

to obtain
dy

dτ
= ∓

√
1 − α2 sin2(y).
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Since y(τ = 0) = 0 we get

sx(τ ) = ±cn(α2, τ ) sx(t) = −cn

((
a

2bz

)2

, bzt

)
.

The parameter a is chosen to have

sx(1) = −cn

((
a

2bz

)2

, bz

)
= 0.

We have formulated and solved in an analytic way, the problem of rotation of the Bloch
vector (which characterizes completely the state of a two-level system) from a prescribed
initial vector to a prescribed final vector, in a given amount of time, using an optimal control
scheme which minimizes the energy expended by the control fields, or the magnitude of the
rate of change of the control fields or a linear combination of both. We have found control
fields perpendicular to both the initial and final Bloch vectors, and multiple local minima
corresponding to the arrival from the initial to the final Bloch vector in one or other senses or
after one or more complete turns. Finally, we applied the results to the general one-qubit gate
and extended them to the case of a single control field minimizing the control energy, where
physical intuition alone does not provide a reasonable solution.
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